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Abstract

We describe a Lagrangian particle advection scheme which is intended for use in hybrid finite-volume (FV) large-eddy
simulation/filtered density function (LES/FDF) methods for low-Mach flows, but which may also be applicable to
unsteady probability density function (PDF) methods, direct numerical simulation (DNS) or any other situation where
tracking fluid particles is of concern. A key ingredient of the scheme is a subgrid reconstruction of the filtered velocity field
with desirable divergence properties, which is necessary for accurate evolution of the particle number density. We develop
reconstructions for 2D and 3D Cartesian staggered non-uniform grids. The reconstructed velocity field is continuous and
piecewise parabolic in the velocity-component direction. In the direction normal to the velocity component the reconstruc-
tion is piecewise linear. The divergence of the reconstructed field is bilinear in 2D (trilinear in 3D) within a given cell and
consistent with the discrete divergence given by the staggered-grid velocities. Though the reconstructed divergence field
may be discontinuous from cell to cell, the norm of the differences between the vertex values of the reconstructed diver-
gence for neighboring cells is minimized. As a consequence, the divergence is everywhere zero for the constant-density case.
A two-stage Runge-Kutta scheme is employed for advancement of the particle positions. To assess the performance of the
scheme we utilize a set of non-trivial velocity test functions which are designed to mimic realistic flow fields. We show that
an advection scheme based on the new velocity reconstruction method is effective at maintaining an accurate particle
number density in the particle-tracking limit.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A recent trend in the modeling of turbulent reacting flows is to combine large-eddy simulation (LES) with
the filtered density function (FDF) concept [9,24] into hybrid LES/FDF methods. In the present work, follow-
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ing Sheikhi et al. [29] and Raman et al. [27,28], we consider the use of a joint composition filtered mass density
function (FMDF) in which the filtered velocity is obtained from the LES solver and the subgrid velocity fluc-
tuations are modeled. The FMDF is modeled by a Lagrangian particle method and is tied to the LES solution
through the mean particle velocity and the mean particle mass density. These methods retain the principal
advantage of the probability density function (PDF) approach [23] in that the chemical source term appears
in closed form. They also leverage the maturity of low-Mach variable-density LES solvers (e.g. [7,13,22])
which achieve accuracy of the LES filtered velocity field together with stability of the numerical solution —
a non-trivial matter.

A key issue in hybrid LES/FDF methods is the consistency between the filtered mass density used in the
LES solver and the mean particle mass density derived from the ensemble of Lagrangian particles used to
model the FMDF. Various strategies are employed to reconcile the redundant density fields (see e.g.
[18,28,32]). At the numerical level, consistency between the corresponding Lagrangian and Eulerian density
fields requires that the cloud-in-cell (CIC) mean particle mass density evaluated at the finite-volume (FV) cell
center matches the FV LES filtered mass density (see e.g. [25] for a detailed discussion of CIC means). Given
an initial particle position distribution which is consistent with the LES filtered mass density, the density fields
will deviate due to: (1) errors in the numerical solution of the LES filtered mass density, (2) statistical errors in
the initial particle position distribution, (3) bias in the CIC mean particle density at forward times, (4) inac-
curacies in the particle advection scheme and (5) statistical noise from the model for the particle velocity fluc-
tuations which account for subgrid-scale (SGS) turbulent transport and also typically account for mean
molecular transport. In this paper, we address issues related to the accuracy of the particle advection scheme
and thus take the particle velocity fluctuations to be zero. This is known as the “particle-tracking limit.”

The inaccuracies of the advection scheme stem in part from errors in the estimation of the local filtered fluid
velocity from the discrete LES data. As pointed out by Pope [23], the divergence field that the particles expe-
rience plays a key role in the evolution of the particle position density (which, as we will show, is proportional
to the fluid filtered mass density). Jenny et al. [12] addressed this issue in a RANS (Reynolds-averaged Navier—
Stokes) context for two-dimensional (2D) Cartesian grids by designing an interpolation scheme that is piece-
wise parabolic in the velocity-component direction and linear in the direction normal to the velocity compo-
nent. The coefficients of the interpolation are specified so that the divergence varies bilinearly within the cell
and approximates the finite-volume divergence at the cell vertices. Furthermore, the Jenny interpolation has
the property that particles see a zero divergence everywhere in the constant-density limit.

Our goal here is to improve upon the scheme of Jenny et al. [12]. The main contributions of the present
work are:

(1) a variant (with improved accuracy) of the 2D interpolation scheme of Jenny et al. [12] based on the piece-
wise parabolic method (PPM) of Colella and Woodward [5] and
(2) an extension of this scheme to 3D and non-uniform grids.

It should be mentioned that while the present work is motivated by hybrid LES/FDF methods, the scheme
is applicable across a range of particle-tracking problems utilizing Cartesian grids." For example, practically
all FDF methods are applicable to unsteady PDF methods. Further, with the introduction of improved meth-
ods for treating particle diffusion [15], particle-tracking methods are also applicable to DNS. Other applica-
tions include multi-phase flows where the drag law requires the local fluid velocity, such as modeling smoke
and water-droplet transport in fire simulations [16], tracking aerosols in environmental flows or cells in bio-
logical flows, and even describing fluid—structure interaction where structural materials are treated as material
points [2,3] which can fragment and interact with the fluid.

The remainder of this paper is organized as follows: in Section 2 we present the relevant governing equa-
tions for LES and particle FDF methods and establish the correspondence between the Lagrangian particle
position PDF and the Eulerian filtered mass density. Section 3 describes the new reconstruction method. In

! Note that a staggered grid is not a requirement for use of the present method. However, the details are described here in terms of a
staggered arrangement. For collocated grids the reader should first apply the “Stage 2 correction described in [32] to obtain the final
vertex velocities (see Section 3.2).
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Section 3.1 we discuss the differences between PPM and PERM. In Section 3.2 we recast the Jenny interpo-
lation in terms of “parabolic edge reconstructions” of the continuous velocity field. The principal advantage of
this reformulation is that it allows the method to be readily extended to 3D. An overview of the 3D formu-
lation is presented in Section 3.4 with details given in Appendix A. In Section 4 we describe two Runge—Kutta
schemes for advancing the particle position ODE. Note that the velocity reconstruction and the time integra-
tion scheme together comprise the “Lagrangian particle advection scheme.” In Section 5 we present results for
three test cases: (1) a constant-density flow in 2D, (2) a variable-density flow in 2D and (3) a constant-density
flow in 3D. Suggestions for future research are given in Section 6 and conclusions are presented in Section 7.
Appendix B describes the extension of the scheme to non-uniform grids. An accuracy analysis is presented in
Appendix C and in Appendix D we provide a convergence study and thus verification of our 2D code.

2. Governing equations

In this section we describe the fields, properties and evolution equations which are relevant to the present
work for both the continuous and particles systems. We then discuss the requirements for correspondence
between these two systems.

2.1. Continuous system

The LES and FDF model formulations are a closed set of deterministic equations subject to random initial
conditions (i.c.s) and boundary conditions (b.c.s). For a given set of i.c.s and b.c.s, the solution of the trans-
port equations uniquely determines one realization of the filtered field. This is the continuous system. Note that
the continuous system is the model analog of the exact fluid system as discussed in Pope [25].

In LES the “large” and “small” scales are formally defined through a spatial filtering operation. The large
scales are simulated explicitly and the effects of the small scales must be modeled. A filtered field is defined by
convolution of an instantaneous field with a filter kernel G(r; A) of characteristic filter width A. We take A to
be constant and uniform and henceforth omit it from the kernel argument list. We take the filter kernel to be
positive (G(r) = 0), symmetric (G(r) = G(—r)), and normalized ([ G(r)dr=1). For an arbitrary scalar
¢(x,1), the filtered field is given by

((x.0), = / Glx — X)p(x, 1) dx. (1)

The Eulerian velocity field and fluid mass density are denoted U(x, ¢) and p(x,¢), respectively. In variable-
density flows it is usual to work in terms of the Favre-filtered velocity field defined by

<p(X, t) U]’(Xv t)>é
(p(x,1),

(Uj(x, 1)), 2)
In hybrid LES/FDF methods (U(x,?)), is obtained from the LES solver. Details pertaining to the LES for-
mulation are beyond the scope of the present work. The interested reader is referred to [28].

In the present work we consider the transport of n, random scalar fields ¢(x, ¢), with = {y;, 5, .. ., np%}
being sample space variables for each composition. A starting point for the development of the transport
equation for the composition FDF is to consider the fine-grained joint-PDF of compositions, f’(¥;X,¢),
defined as a product of Dirac delta functions,

¢
LW, = [To(d.0x, 1 = v,) = (e, 1] — ). (3)
a=1
Following Jaberi et al. [11], we then define the joint composition filtered mass density function (FMDF) by

FLix0) = [ Gix = X)plx 0f (X0 dx. @)
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For an arbitrary random function, 0O(x,t), the conditionally filtered field is defined by

_ JG(x = x)p(x', O, )3([x', 1] — ) dxX’
(o), o . 5)
Utilizing (5) it can be shown that the FMDF evolves by
oF, 0 0
St e PO =5 [P (el |, ©)

where D()/D¢ = 0()/0¢t + U - V() is the material derivative and summation is implied over repeated suffixes.
The conditional mean on the right-hand side of (6) accounts for chemical reaction (which is closed) and molec-
ular diffusion (which must be modeled).

2.2. Particle system

Due to the high dimensionality of F;, the numerical solution of existing models for (6) via a finite difference
method is intractable. Instead, it is usual to employ a Lagrangian particle method [23]. A general particle pos-
sesses the properties of mass, position, velocity, and composition, denoted m*, X*(¢), U*(¢) and ¢*(¢), respec-
tively. Superscript indices are used to distinguish particles and the superscript asterisk denotes a general
particle. We wish to represent the FMDF by an ensemble of such particles within the computational domain.
These particles together with their properties and evolution equations for their properties comprise the particle
system.

For the particle system it is convenient to work in terms of the mass density function, denoted F7, (¥, x; 7).
Let M represent the total mass of fluid in a closed or periodic domain so that M is constant. This mass is
equally distributed among N particles such that each particle has mass m = M /N. The initial position of
the ith particle, which is random, is X@(to). In general we consider the fluid particle to follow a trajectory
defined by a random velocity field (even if the filtered field is deterministic the fluctuations are not) and so
the current particle position, X (), is also random, as is the current particle composition, ¢'”(r). We first
define the discrete mass density function to be

MU SD) Zé ¥)o(X"[t] — x). (7)

The expectation of F}, is the mass density function (MDF),
Fox (W, x50) = (Fy (¥, %;1)),
— M(3(@"[1] = W)OX [ - X)),
= Mf 4 (¥, X;1),
= My (X5 0)f 51 (W5 1), (8)
where f;, denotes the joint PDF of particle position and composition, fy is the marginal PDF of particle posi-

tion, and Jowe is the PDF of particle composition conditional on particle position.
The particle position and composition, respectively, evolve by

dx;

—L=u;, 9)
d¢, _ .
W:Aw (10)

where the composition drift coefficient 47 (¢) accounts for the effects of chemical reaction (which is closed) and
molecular mixing, neither of which are addressed in this paper. In hybrid LES/FDF methods, the particle
velocity, U*(¢), is decomposed into a conditional mean, (U*(¢)|x), and a fluctuating component, U™ (¢). The
mean is obtained by an interpolation of the LES filtered velocity (which is only available at discrete grid loca-
tions) to the particle position. The specifics of this interpolation scheme are a key focus of this paper. The fluc-
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tuating velocity is modeled. For a discussion on the modeling considerations the reader is referred to [25].
Within the present work we consider only the “particle-tracking limit” in which U”(¢) = 0. With the particle
position and composition evolving by (9) and (10), for a constant mass system the particle MDF evolves by

oF: . 9 0
(24 * *
— [F* (U x. )] = — —
ot ax,[ "“< J| V)] o,

[FxAs). (11)

2.3. Correspondence

An important point to appreciate about FDF methods is that the particle properties only indirectly repre-
sent statistical samples from (in the present case) the FMDF. The particle property evolution equations them-
selves imply a certain Fokker—Planck equation for the Lagrangian joint PDF of the particle properties, here
represented by the evolution equation for the particle MDF (11). Conceptually, the FMDF, F;, and the par-
ticle MDF, F ., are quite different entities in that the former is defined in terms of a physical-space filter and
the latter is based on a statistical expectation. However, the particle system can be designed such that the evo-
lution equations for the FMDF and particle MDF correspond (i.e., they have the same form), and hence with
corresponding initial and boundary conditions their solutions are identical. It is in this way that the particles,
which represent statistical samples from the Lagrangian joint MDF, also represent statistical samples from the
FMDF. As we now show, the evolution of the marginal PDF of particle position, £y, plays a key role in main-
taining correspondence.

Note that the following left-right arrow symbol, <=, is to be read, “‘corresponds to.” The fundamental
correspondence discussed above is

Fr(y;x, 1) <= Fop (¥, x;1). (12)

Thus, the zeroth moment of the FMDF, which is the filtered density, corresponds to the zeroth moment of the
MDF,

<p>z:/FL(!//;X,l)dl//<:> /FZX(!//»X;t)dlIIZM@(X*[f] — X)) = Mfy(x;1). (13)

Integrating (6) over composition space and manipulating the result we obtain the filtered continuity
equation

D, In{p), _

b~V Uk (14)
where D;()/D.t = 0()/0t + (U), - V(). Similarly, when we integrate (11) over composition space we obtain
D'Inf; y
S v ), (15)

where D*()/D*t = 8() /ot + (U*|x) - V().

By comparing (14) and (15), we can see that, with (U), <= (U"|x) and with f} evolving by (15), an initially
consistent position distribution (i.e., Mfy (X, t) = (p(X, #)),) remains proportional to the filtered mass density
with the constant of proportionality being the inverse of the total system mass M ~'. Thus, as discussed by
Pope [23] and Jenny et al. [12], the divergence field that the particles experience during their position evolution
(i.e., during the integration of (9)) is of fundamental importance for maintaining the correspondence between
the FMDF and the particle MDF.

3. Parabolic edge reconstruction

In the sections that follow we describe a variant of the 2D velocity reconstruction of Jenny et al. [12]
intended for use with Cartesian staggered grids. With our particular problem motivated as discussed above,
we switch to a more general terminology: We work in terms of the staggered-grid velocity data
U, +%_J.,k,17ij +%,k7Wi,j.,k +%}T for all i,j,k, which are the fundamental quantities represented on the (3D) grid.
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The suffix notation, which represents the physical-space storage location, is described more precisely below.
All the parameters of the reconstruction are ultimately related to the staggered-grid velocities which are avail-
able from the flow solver only at discrete grid locations. The general problem we wish to solve is: given the
discrete velocity data, provide “accurate” reconstructions of the continuous velocity field U(x) =
[U(x), V(x), W(x)]", to be used in an advection scheme for advancing the particle position. The reconstructed
velocity-component fields are denoted u(x), v(x) and w(x), respectively.

Note that the continuous fields introduced above are merely convenient constructs which we can use to
relate the fundamental grid data to the reconstruction. Conceptually, these continuous fields represent the
ideal reconstruction (the properties of which are discussed below). In practice (e.g. LES/FDF), there is no
known U(x). The concept of the continuous field is still useful, however, because in tests we can generate a
U(x) field, for example, and extract all the U, 11,4 grid data from it. We can then compare u(x) with U(x)
to assess the accuracy of the reconstruction.

There are several aspects to consider regarding the “accuracy” of the reconstruction:

(i) Order of accuracy. With 4 being the grid spacing in the x-direction and with U(x) representing the con-
tinuous, smooth component field, when u(x) = U(x) + O(h") the reconstruction u(x) is said to be rth-
order accurate.

(ii) Continuity. Ideally, the reconstructed velocity and divergence fields would be continuous from cell to
cell.

(iii) Cell integral constraint. With S representing the surface of a cell and with n representing the surface nor-
mal, the cell integral constraint states that [;u-ndS = V(V, - U), where V is the cell volume and V, - ()
represents the discrete divergence operator on the staggered grid (defined below).

(iv) Limiting behavior for the incompressible case. We define the “incompressible case” as that in which the
discrete divergence is zero, V, - U = 0, for all cells. In this case we require that the divergence of the
reconstructed field is identically zero, V - u = 0, for all x. This is a non-trivial aspect of the accuracy that
precludes the use of simple interpolation schemes such as bi(tri)-linear interpolation or even high-order
B-splines.

Items (i) and (ii) above are conventional notions of accuracy. The cell integral constraint, Item (iii), is also a
standard requirement and is addressed by other reconstruction schemes (see e.g. the “Stage 2” correction of
Zhang and Haworth [32]). Controlling the divergence properties, and in particular the divergence in the
incompressible limit, was first addressed by Jenny et al. [12]. As we will see, controlling the divergence of
the reconstructed field in the incompressible limit requires that we use ‘“‘cross-component” information in
the reconstruction for a given component (e.g. V-component information for the u-component reconstruc-
tion). In addition to facilitating a 3D formulation, the method presented here improves upon the accuracy
of the Jenny interpolation because the cross-component correction terms are of higher order (details can be
found in Appendix C).

The form of the reconstruction developed below is inspired by the piecewise parabolic method
(PPM) of Colella and Woodward [5]. The strategy is to cast the continuous velocity field in terms
of parabolic edge reconstructions for cell edges parallel with the velocity-component direction. The
reconstruction is determined on a cell-by-cell basis, with limited continuity between cells (as discussed
below).

In the remainder of this section we first relate the present method to PPM for the 1D case. The full details of
the 2D reconstruction are presented next in Section 3.2, followed by a summary of the properties of the
scheme. Section 3.3 discusses reconstruction near boundaries. In Section 3.4, we discuss the extension of
the method to 3D. Details of the 3D implementation are given in Appendix A.

3.1. 1D reconstruction. distinguishing PPM and PERM
In the notation of the gas dynamics community [30] the 1D reconstruction u;(x) for a cell centered at x;

depends on the cell average velocity, u;, the first-order slope, Ajm (associated with the first spatial derivative),
and the second-order slope, A»Ez) (associated with the second spatial derivative). Consider a 1D grid with
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uniform spacing /. We define the local cell coordinate ¢ = + 1 for x € [x; — 4, x; + 4] so that ¢ € [0, 1]. The
PPM reconstruction [5,30] is then

i

This reconstruction is designed to obey the cell-average constraint

/0 u;(q)dq = u;. (17)

Note that time has been omitted from the argument list since all fields are located at the same temporal loca-
tion during the reconstruction.

For the parabolic edge reconstruction developed here we adopt the general PPM formulation for edges that
are parallel with the velocity component direction. However, we relax the cell-average constraint because these
edges are not the storage locations for the primitive velocity data. The equivalent of the cell-average constraint
for the staggered-grid, multi-dimensional case is an integral constraint for the face corresponding to the stag-
gered velocity component; e.g. the “east” face for the U component (grids for the multi-dimensional cases are
further discussed in Section 3.2, Appendix A, and in Appendix B). As we describe below, in the multi-dimen-
sional case the vertex velocities for a given face are specified to satisfy the integral constraint. With the vertex
velocities specified, the reconstruction along the parabolic edge is augmented from the PPM form as follows:

" LAPXOI. AR IS
u;(q) = u; + -3 A; T3 ~5) "2 A; (18)

(comparing (16) and (18), note that the factor ;5 becomes  in the third term on the RHS). A comparison be-
tween the reconstructions given by (16) and (18) is shown in Fig. 1. Notice that the edge vertex values,

_ 1 1
u(q) = u; + (q —E)A,(-]) +3

1k i
0.5F 1
Youn
8
El
oF 4
|
—-0.5} ) i
|
|
| |
I I
-1} ! ! i
1 1 1 1 1
0 0.5 1 1.5 2 25 3
T

Fig. 1. Comparison between the piecewise parabolic method (PPM) and the parabolic edge reconstruction method (PERM) in 1D. In this
example we show a 1D grid with three cells. In the center cell we have reconstructed the continuous velocity field in two ways: with PPM
via (16) and with PERM via (18). We specify the cell averages i; arbitrarily for this illustration. The first-order slope is specified using a
central approximation to the first derivative (Fromm’s method), A}l) =1(u;1 — u;-1), and the second-order slope is based on a central
approximation to the second derivative, Aj(»z) = ;.1 — 2u; + ;. Notice that the PPM reconstruction obeys the cell-average constraint (17)
and that the PERM reconstruction interpolates the vertex velocities u;(0) and u;(1). In this illustration, the vertex velocities result from the
specification of the first-order slope. However, when using PERM in practice for the multi-dimensional case, the vertex velocities are

specified and the first-order slope follows.
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u;(q = 0) and u;(¢ = 1), are now independent of the second-order slopes, A}z). Thus, #; and Aj.l) are uniquely
determined as

_ 1

;= 5 [u;(0) +uy(1)] (19)
and

A = (1)~ u(0). 20)
respectively.

To simplify the formulae, here and throughout the remainder of Section 3 we do not use suffix notation to
distinguish velocity components. Hence, in the edge formula (18) the component “u” is representative of the
“parabolic edge component,” i.e., the velocity component for the direction parallel to the edge. The same
holds for (19) and (20). Note that for the multi-dimensional case the suffix j identifies a specific edge. For
example, in 2D there are two edges, the “north” and “south” edges, which are parallel with the x-direction.

To summarize, in the 1D context the differences between PPM and PERM are as follows: With PPM, the cell
average, u;, is specified; the first- and second-order slopes, Aﬁl) and Aﬁz), are selected based on accuracy and data
variation (see e.g. [30]) considerations; and the form of the reconstruction (16) guarantees that the cell-average
constraint (17) is satisfied. In PERM, the edge vertex velocities are specified. As is discussed later, the vertex veloc-
ities are responsible for the cell continuity properties. The form of the reconstruction (18) is based on PPM but is
augmented such that the vertex values are independent of the second-order slopes. It follows that #; and Aj.l) are
uniquely determined by (19) and (20). The second-order slopes are free parameters which we use to control the
properties of the divergence of the reconstructed field for the multi-dimensional cases described below.

3.2. 2D reconstruction

We first define the grid velocities and divergence constraints upon which the reconstruction is based. We
then present the continuous reconstructed field in terms of parabolic edge parameters and show how these
parameters are obtained from the discrete grid velocities and divergence constraints.

To avoid confusion between directional indices and grid indices, we denote the directional components as
X =[x, y]T. On a non-uniform, rectangular grid, let /; and g; denote the width and height, respectively, of cell
(i,). The center of the cell is located at (x;,y;). Similar to the 1D case, we define the local cell coordinates

X=X
q; =

1 hi hi
hi +§ for x € |:x,‘—27.x,'+2:| (21)

and

p=tY
&j
such that ¢; € [0,1] and r; € [0, 1].

For simplicity in illustrating the concepts, in this section we consider only uniform, square grids. Hence, we
have g = h and we refer to the uniform grid spacing / and local cell coordinates ¢ and r. Note that, with minor
modifications to the interpolant weights given below, the current method may be applied to non-uniform, rect-
angular grids without loss of accuracy (extension to non-uniform grids is discussed in Appendix B).

The primitive staggered-grid velocities (also known as face velocities) are denoted by U = [U, 7]T. The stag-
gered storage location for the U component for cell (i, /) is (x; +4,y;). As a shorthand notation for the face
velocities we write U(x; +5,y,) as U,y . Similarly, the staggered storage location for ¥, 1 is (x;,»; +3); see
Fig. 2. In a finite-volume (FV) code, the face velocities represent the surface average of the normal velocity
component for the corresponding face. Thus, the discrete divergence for cell (i, j), denoted (V, - U), j» OF sim-
ply V,, - U when the cell of interest is understood, is given by

&; g;
for y € [yj—ij,yj+ij}, (22)

_ 1r— _
(Vi 0)y =7 [Ty, =T

LJ

+ Vs = Vo] (23)

]
1=5]
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u(l,1
u(0,1) vgl 1))
o v(0,1) . ’
h \
—— 3 ﬁN
Vi,j+% ,,,,,
Uiyie @ =Ttk Tw UR
4
_l
ij—% .__i'___ q
> Ug N
u(0,0) u(1,0)
v(0,0) v(1,0)

Fig. 2. (Left) Staggered grid in 2D showing the locations and indexing convention for the staggered-grid velocity data. The solid dot at the
center of the shaded cell shows the location of the cell center (x;,y;) and the solid arrows show the storage locations for the staggered
velocities. The “east” face of cell (i, f) is centered at (x; + h/2, yj) and this is the storage location for U,,1),,. Similarly, the “west” face is
centered at (x; — 4/2,y;) and stores U;_1/»;. The “north” and “south” faces, centered at (x;,y; + //2) and (x;,y; — h/2), respectively, store
Vij+12 and V1. (Right) Center cell in local cell coordinates (g,r), where g = (x —x;)/h+ 1/2 for x € [x; — h/2,x; + h/2] so that
ge0,1]andr=(y—y;)/h+1/2fory € [y, — h/2,y; + /2] so that r € [0, 1]. The cell vertices are marked by the crosses and the values of
the vertex velocity components for the given cell are indicated by (0, 0), v(0, 0), etc. The parabolic edge velocities are shown for each of the
parabolic edges. For example, on the north edge we have uy. Although not shown to avoid clutter, each of these edges is also assigned a
first- and second-order slope. All the edge parameters for the reconstruction are ultimately related to the staggered-grid velocity data.

We approximate the value of the divergence at cell vertices by a weighted restriction of the surrounding cell
divergences. For later utility, the vertex divergence is scaled by the grid spacing and indexed by the physical-
space cell vertex coordinate. Thus, for a given cell, the vector of interpolated vertex divergence values is

T
0= Hi—%,j—% 01‘—%#% 0i+%d’-% 0f+%sf'+%] ) 24
where, for example,
h _ _ _ _
Gi—%,j—% = Z [(Vh ’U)i,/ + (vh 'U)ifl,j + (vh ’U)i,fl + (vh ’ U)i—l,/—l]' (25)

Within the (i, ) cell, the 2D reconstruction of the continuous velocity is

_ N 1 AN B S
ulg,r) = (1=r)jus+ (g5 |As+t3y(a-5) — 57l

+r|an + Do, 41 ANV (26)
’ _ - Z _-) _Z

UN q 5 u, N 2 q P 4 u,N

and

_ 1 N 1
olaor) = (1= ) [ow+ (= 3)al% +59 (7= 3) —518%

1
2
. N, 1 N 1,0
+q|ve + r—s Ag+58r—5) —5 M| (27)
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The local divergence of the reconstructed field, #(V -u) = g—; +&, s
h(V -u) = ¢(q,7)

1 1 1
=08+ (g-3)a8] oA+ (4 5)aR )+ 0 -0l + (- 3) a3
1
+alalh+ (r-5)a0]. )

where we have introduced the shorthand notation ¢(g,») with ¢ € [0, 1] and » € [0, 1] to represent the contin-
uous divergence within the cell (multiplied by /). It remains that we specify the parameters for each edge of the
reconstruction: i, ;, A dnd A , for parabolic-edge component o on edge j. As previously mentioned, u,; and
A( ) are uniquely determined by the edge vertex velocities, which are specified below to satisfy cell continuity
constraints The second-order slope A is then chosen to achieve accuracy and to control the cell divergence
properties.

We now turn to the specification of the vertex velocities. For the faces corresponding to the staggered-grid
velocity components we specify a linear velocity reconstruction that satisfies the face integral constraint. Con-
sider the east face (¢ = 1) of the 2D cell centered at (x;,y,). The linear velocity reconstruction has the form

— 1
u(l,r) =Ty, + (r - 5) AL (29)

Note that the face integral constraint

1
/ u(l,r)ydr="0U,; (30)
) 2

is satisfied for any specification of A . We choose to use a central difference approximation to the first-order
slope, also known as the Fromm slope [8,30],

11— —
I)E = 5 [UH%,H»I - Ui+%,jfl:|' (31)
We make this choice because (a) the reconstruction (29) is then second-order accurate and (b) dispersion errors
(i.e., wiggles) are permissible for the velocity field in an LES context.”
An alternate view of the Fromm face reconstruction, which is more easily extended to the 3D case, is to first
generate temporary vertex values by a linear interpolation of the neighboring face values and then to add a

constant shift to these temporary values to enforce the face integral constraint. The temporary vertex values,
denoted by the hat symbol, for the east face are given by

1

(

A

Uiyt = % (UH%J + UH%JH)’ (32)

ity = 5 (Do + Uiyt (33)
and for the west face we have

iy = % (Ui +Ti). (34)

iy s = % (T + Vg (35)

2 Another way to state point (b) is that the subgrid velocity field is not subject to the same boundedness constraints as a scalar field such
as mass fraction, which must remain in [0, 1] to be realizable. Note that any choice of the first-order slope will suffice to maintain continuity
of the velocity-component field in the component direction. For example, Jenny et al. [12] choose to use a MINMOD slope limiter, which
is advantageous for convergence in RANS simulations.
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Let ug =1 (i, 14+l 0) and uw =1 (i il;_1; 1+ #;_y;,.1) denote the averages of the temporary vertex values

on the east and west faces respectively. The final vertex values for the u component are then specified as®

u(1,0) = ai+%‘j,% + Uy, — e, (36)
u(L,1) = ity + Uy, — i, (37)
(0,0) =i, 1+ U,y — tiw, (38)
u(0,1) = ity 1j0y + Uy, — iiw (39)

Note that the linear face reconstruction implied by the vertex values (36) and (37) automatically satisfies
the integral constramt (30). The analogous condition holds for the west-face integral constraint; i.e.,
fo (0,7)dr = l__ ;- Additionally, cell to cell continuity of the velocity-component field in the component

direction is achieved since, for example (u[1,0]);, = (u[0,0]),,,, and (u[1,1]),; = (4[0,1]),,; ;. In other
words, the u vertex values on the east face of cell (i,j) match the u vertex values on the west face of cell

(i+1,)).
The v-component vertex values are specified analogously. The temporary vertex values on the north face are
) Lo
Ui ljd = B (Vi,jJr% + Viflfr%)? (40)
. 1/~ -
Vidj+d =5 (Vi,ﬂ% + Vi+1.,j+%> (41)
and for the south face we have
) Lo
Ui L1 = B (Vi.j—% + Vi—lj—%)v (42)
) Lo
Uil jt = 3 (Vi,jf% + Vi+lJ7%>' (43)
The final vertex values are then given by
(0 1)—1) 1/+%+V”+1 N, (44)
u(l,1) = Db jah Vg — 0N (4
v(0,0) = {)i—% 1+ Viir— Us, (46)
0(1,0) = by, + Vs — s, (47)
where vy = %(vi,%#% + ¥;41,44) and s = (v 1j-4 + Bi1;1). Note that, due to the spemﬁcatlon of the v-compo-
nent vertex values (44)—(47), the integral constraints fo ,Ddg =7V, +1 and fo 0)dg =7, yare satisfied

for the north and south faces, respectively, and also that the reconstruction achleves cell to cell contlnulty of
the v-component field in the y-direction.

With the vertex velocities specified, the parabolic-edge parameters are given by analogy to (19) and (20). To
be explicit, we have

g = %[ (1,0) 4+ u(0,0)], (48)
iy = 5 lu(1, 1)+ u(0, 1), (49)
by = 5 6(0.1) +2(0,0)], (50)
e = 5 o(1,1) +0(1,0)] (51)

* The constant shift, e.g. U, T i on the east face, is effectively the Cartesian staggered-grid equivalent of the “Stage 2” velocity
correction implemented by Zhang and Haworth [32].
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)
)
)
)

(55

We now turn to the issue of specifying the second-order slopes. By evaluating (28) at the vertices, we find

the vertex values

$(0,0) = ALY + ALY, —
$(0,1) = Al + Al —

1

of the reconstructed divergence are

1 1

We observe that (56)—(59) are not linearly independent, because

1
4

1

~[6(0,0) + $(0,1) + $(1,0) + (1, 1)] = 5 [Alg + A} + ALY, + AY] = 4(V, - U),

2

independent of the second-order slopes.
We can write (56)—(59) in matrix notation as

[ u,S
A% = 142
1 0
0 1

A:
1 0
0 1

and

-1
B—l 0
201
0

AR A AR
AR AN AR
1o

1o

0 1

0 1

0 -1 0
110

0 0 -1
101

Note that B has a rank deficiency of one.
Ideally, we would have

© = AA"Y +BAP.

(56)
(57)
(58)

(59)

(66)

(67)

In other words, we would have the vertex values @ of the reconstructed divergence equal to the interpolated
vertex divergences @, which would imply cell to cell continuity of the reconstructed divergence field. However,
because B is rank deficient, given ® and A, in general a value of A® cannot be found to satisfy (67).



R. McDermott, S.B. PopelJournal of Computational Physics 227 (2008) 5447-5491 5459

Alternatively, we seek to minimize (in some sense) the difference between the reconstructed divergence, which
may be discontinuous from cell to cell, and the interpolated divergence,* which is continuous from cell to cell.

With this in mind, we propose the following specification of the second-order slopes. Let the second-order
slopes be decomposed into

AP = A+ (68)
The equation for the vertex values of the reconstruction may now be written as
® = AA"Y + BA + Bo. (69)

We specify A based on an estimate of the second spatial derivative along a given edge. For example, on the
south edge we have

i (2 Avs = 7 7 i 70
Py . ~Bus =5 U3yt — Ul t— ULy LU g, 1) (70)
q=2:I"=

ol—
=

Note that the & values are readily available in practice since they are also the “temporary vertex values,” as in
(32), for example. The correction, 8, is then specified by the least-squares/minimum-norm (LSMN) solution

o =B"(® — AA"Y — BA), (71)
where the (Moore—Penrose) pseudo-inverse [6,17,20,21] of B is
-3 -1 3 1
If-1 -3 1 3
+ —
Br=ql3 3 -1 1 (72)
-1 1 -3 3

There are an infinite number of least-squares solutions to (69); i.e., choices for  which minimize the Euclidean
norm ||® — O||,. The minimum-norm solution (71) is the unique solution in the family of least-squares solu-
tions that also minimizes ||dl,.

Substituting (71) back into (69) we obtain

® = AAY + BA + BB*(© — AA"Y — BA) = BB*@ + (I — BB")AA"Y + (B — BB*Bs) A, (73)
N e’

0

where 7 is the identity matrix and, in the second step, the third term on the RHS is zero due to the properties of
the Moore-Penrose pseudo-inverse. Hence, after subtracting ® from both sides, we find

®— 0O = (I — BB (4AY — @). (74)
Note that
1 1 1 1
1({1 1 1 1
[ —BB")A == 75
( ) 211 1 1 1 (75)
1 1 1 1
and also
1 1 1 1
1({1 1 1 1
[ —BB" =- 76
411 1 1 1 (76)
1 1 1 1

4 Here the “interpolated divergence” refers to a continuous (e.g. bilinear) interpolation of the cell-centered divergences. Note that the
“weighted restriction” which results in @ is simply a bilinear interpolant evaluated at the vertex locations for a uniform grid.
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Hence, by utilizing (60), we find that at the “south-west” vertex, for example, (74) yields

— 1
$(0,0) = 957%,/‘7% +h(V,-U) - 4 0; 14 + 957%,1‘% + 0:‘%,17% + 0i+§,j+% ) (77)

with similar expressions at the other vertices. Hence, due to linearity, the divergence of the reconstructed field
is everywhere zero for the incompressible (divergence free) case.
In short, we specify the second-order slopes by (68). The properties of the resulting 2D reconstruction are:

1. For a given component, the reconstructed field in the component direction is continuous, piecewise para-
bolic and formally second-order accurate (further discussed below and in Appendix C.1).

2. In the component-normal direction the reconstructed field is piecewise linear and second-order accurate,
but may be discontinuous from cell to cell.

3. In the component direction, the spatial derivative of that component is piecewise linear and second-order
accurate.

4. In the component-normal direction, the spatial derivative is piecewise constant and first-order accurate.

5. The surface integral of the reconstructed field is consistent with the discrete cell divergence obtained from
the staggered-grid velocity data, i.e., [(u-ndS =V(V, -U), where S represents the cell surface with sur-
face normal n, and V is the cell volume.

6. The divergence of the reconstructed field is bilinear within a cell, but may be discontinuous from cell to cell.

7. Due to Items 5 and 6, the reconstructed divergence evaluated at the cell center matches the discrete cell
divergence, i.e., ¢(L,1) = (V- U).

8. The Euclidean norm ||® — ©||, between the reconstructed and interpolated divergences at the cell vertices is
minimized.

9. Due to Item 8, the divergence of the reconstructed field is everywhere zero in the constant-density case (in
which O is zero).

Regarding Item 1 above, the PERM velocity is formally second-order accurate due to the linear interpola-
tion used in the component-normal direction (see Appendix C.1). However, as we show in Appendix D.1, for
the test problems considered here (which are complex and general in terms of combustion modeling) the
scheme exhibits third-order behavior for coarse grid resolution, which is more relevant in practice than the
formal order for vanishing 4.

For uniform, rectangular grids (i.e., # = ag, where o is a constant) the scheme requires little modification.
Only the definitions of the local cell coordinates are affected, as described by (21) and (22). For non-uniform
grids, the scheme retains all the properties listed above but requires modification of the scaling for the inter-
polated vertex divergence, modification of the weights used to compute the temporary vertex values, and mod-
ification of the weights used in the formula for the specified second-order slopes. Details of these modifications
are discussed in Appendix B.

3.3. Reconstruction near boundaries

Little modification of the method is required near boundaries to achieve the same order of accuracy. Here
we consider simple boundaries that are aligned with a cell face. In 2D, consider an example where the south
edge of the cell represents a wall boundary. Presumably, the values of the velocity components are known on
the boundary. For example, the velocities will be zero if the no slip and impermeability conditions are to be
satisfied. Clearly, the PERM parameters for the south edge are trivially zero. However, the u component final
vertex values for the north edge are affected by the boundary. For a given cell (i, /), the final vertex values at
the wall are #(0,0) = u(1,0) = 0. In order to satisfy the face average constraint on the east and west faces, the
final vertex values for the north edge must be specified as

u(0,1) = u(0,0) + 2T, , (78)
u(1,1) = u(1,0) + 20,y ;. (79)
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Note that if the velocity near the boundary is not sufficiently resolved, Eqgs. (78) and (79) may lead to large
discontinuities in the reconstruction. This is true of most reconstruction methods that specify the boundary
value and then enforce the face average constraint; if continuity is achieved, then this comes at the cost of large
dispersion errors in the reconstruction (see e.g. [14]). The remaining u component north edge PERM param-
eters (edge velocity uy, first-order slope AEH\I, and specified second-order slope &,,N) are found in the usual way
described above. '

For the v component in this example, the situation is slightly different. The final vertex values are found as
usual, and hence the edge velocities (vw and 7g) and first-order slopes (Afl\),\, and Agé) are determined as shown
above (see (54) and (55)). However, the specified second-order slopes must be obtained from a one-sided dif-
ference. To maintain accuracy, we require a second-order accurate representation of the second spatial deriv-
ative of v in the wall-normal direction evaluated at the edge center. For example, on the west face we may use

N % . R
Avw =1 <6y2) ol =(0,0) — 2”1‘—%4‘% R USEIE O(h4)~ (80)
q=0,r

With the edge parameters specified, the correction d is obtained from (71); the second-order slopes are ob-
tained from (68); and the reconstruction within the cell is given by (26) and (27). Note that same principles
may be applied to a corner cell.

3.4. 3D reconstruction

One of the strengths of the new formulation is the ease with which it extends to 3D. Details of the 3D recon-
struction are presented in Appendix A. The key difference between the 2D and 3D cases is that in 3D we now
have 12 parabolic edges and 8 vertices. Hence, in the 3D matrix equation similar to (69), A and B are now
8 x 12 matrices and B has a column rank deficiency of 5. The LSMN solution analogous to (71) is used
for the second-order slope correction and the resulting scheme inherits all the properties of the 2D scheme
listed above.

4. Time integration

In this section we describe two simple methods for integrating (9) from time #' to time "*! = ¢ 4+ At. The
two-stage Runge—Kutta scheme (RK2) [10], also known as “Modified Euler,” is given by

Xty = X5(1) + Aruy(XF[], 1), (81)
X;f(t"“) = %X;(t”) + % [X;(t(l)) + Atuj(X*[t(l)], ], (82)

where 7)) represents an intermediate state in the integration and the suffix j is a directional index. Note that
RK?2 utilizes the velocity reconstruction described in the previous sections to estimate the particle velocity,
U*(r) = u(X"[#],#). Additionally, the RK2 scheme requires the staggered-grid velocity data to be advanced
ahead of the particle positions so that the u(x, #'*!) reconstruction can be evaluated. A practical matter to con-
sider when applying RK2 to a particle method is that between the two stages of the scheme one incurs the cost
of determining the cell location of a given particle. However, in considering the efficiency of the advection
scheme (i.e., the amount of work for a specified error tolerance) this cost is well-justified.

For reference, we also show a three-stage Runge—Kutta scheme (RK3) [10] which we use as an accurate
baseline for comparison in the test cases in Section 5,

Xi(tW)y = X5(1) + AU (X[, 1), (83)
X;(?) = 2){;(1") +% [X}f(f“)) + AU (X[Y], f"“)] ; (84)

(m Lo 2] . . Ar
X ZgX/-(t)-Fg {X/.(t(z))+AtUj(X (2], ¢ +7>} (85)
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Note here that the particle velocity is taken from the continuous Eulerian field, U(x, ). The exact fields used
for the test cases are presented in the Section 5.

5. Test cases

In this section we present three test cases. The first uses a solenoidal velocity field and hence the ideal par-
ticle mass distribution is uniform. In the second test case we introduce a potential flow component with a finite
divergence. In both cases the advection schemes are compared against an accurate baseline case. The second
test case, which is more applicable to combustion simulations, illustrates the need for improved number den-
sity control algorithms in LES/FDF methods. In the third case we test the 3D implementation of the method.
This case highlights that the RK2 time integration locally degenerates to zeroth-order accuracy at the cell dis-
continuities and hence the overall advection scheme is formally first-order accurate in time (this issue is further
addressed in [26]). However, as shown below, with a reasonably small time step (meaning not too small for
practical purposes) the temporal error is of the same order as the spatial error for the problem considered here.

5.1. Problem 1: Solenoidal, rotational flow

We consider the solenoidal, rotational flow defined by the velocity field [1]
U(x,y,t) =1 —2cos(x — t)sin(y — ), (86)
V(x,y,t) =14 2sin(x — t) cos(y — ), (87)
on a square periodic domain of side L = 2r. The domain is uniformly divided into N? cells of side # = L/N,,
where N, is the number of cells in each direction. Within each cell the initial positions of N, particles are cho-

sen at random from a uniform distribution using Latin hypercube sampling. The initial particle positions for a
4 x 4 grid with N, = 400 particles per cell are shown in Fig. 3. The particles in the lower left corner cell are

T

Fig. 3. Initial condition for a 4 x 4 grid with N, = 400 particles per cell. The small dots represent the initial particle positions X*(#). The
periodic domain is a square of side L = 2x. Particle positions are chosen at random from a uniform distribution in each cell using Latin
hypercube sampling. The darker-colored particles in the lower left cell are to be used as marker particles. The lower-left cell is subdivided
into 8 x 8 fine cells which are used to construct the histogram of the subcell particle number density. The right-facing triangles represent
the staggered storage locations for the U-component data and the top-facing triangles represent the staggered storage locations for the V-
component data. The circles in the cell center indicate the storage location for the pressure (not used) in the staggered-grid arrangement
and the crosses indicate cell vertices.
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Fig. 4. The initial condition for the u component of velocity interpolated to the particle positions for a 4 x 4 grid with 400 particles per
cell. The particles are uniformly spaced here in order to more clearly visualize the reconstruction; other results presented in this paper do
not use this initial particle position distribution. The particle shading is proportional to the velocity component value, with black
representing the minimum and gray representing the maximum. Notice that the reconstruction is continuous and piecewise parabolic in the
velocity-component direction, the x-direction in this case. The reconstruction is piecewise linear in the direction normal to the velocity
component. The discontinuities reside at the cell boundaries.

colored dark gray to be used as marker particles throughout the simulation. The resulting PERM reconstruc-
tion for the initial ¥ component is shown in Fig. 4, where the particles are positioned with a uniform spacing to
more easily visualize the reconstruction. The staggered-grid velocity components (e.g. U, Y ;)» which are needed
for the subgrid velocity reconstruction described in Section 3.2, are obtained by sampling the exact solution,
(86) and (87), at the staggered positions. Note that the staggered velocities are discretely divergence free. The u
field in Fig. 4 is piecewise parabolic in the x-direction (see Fig. 6) and piecewise linear in the y-direction (see
Fig. 7). For comparison, in Fig. 5 the same velocity field, now sampled at the cell vertex locations, is interpo-
lated to the particle positions using bicubic splines. The spline interpolation is continuous from cell to cell but
does not satisfy the face integral constraints. Note that the uniform spacing pertains to Figs. 4 and 5 only and
is not used in any of the simulations. Both bicubic spline interpolation (continuous, based on the vertex

Fig. 5. The initial condition for the ¥ component of velocity interpolated from the cell vertices to the particle positions using bicubic
splines for a 4 x 4 grid with 400 particles per cell. The particles are uniformly spaced here in order to more clearly visualize the
reconstruction; other results presented in this paper do not use this initial particle position distribution. The particle shading is
proportional to the velocity component value, with black representing the minimum and gray representing the maximum.
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0.6 1

0.4} -

Fig. 6. A 1D slice taken from the reconstruction shown in Fig. 4 for the u component in the x-direction at y = 0. This plot shows that the u
component reconstruction is continuous and piecewise parabolic in the x-direction. Note that the domain of length L = 27 is periodic in x
and that the apparent C' continuity (i.e., smoothness) observed at x = L/4 and x = 3L/4 is an artifact of the particular test function (see
Eq. (86)) used in this example. In general, all spatial first derivatives may be discontinuous from cell to cell.

Fig. 7. A 1D slice taken from the reconstruction shown in Fig. 4 for the # component in the y-direction at x = 0. This plot clearly shows
that the u component reconstruction is piecewise linear in the y-direction. Note that the domain of length L = 27 is periodic in y and that
the continuity observed at y = L/4 and y = 3L/4 is an artifact of the particular test function (see Eq. (86)) used in this example.

velocities, similar to [31]) and bilinear reconstruction (continuous in the component direction but discontinu-
ous in the component-normal direction, based on the staggered-grid velocities, similar to [32]) are compared
qualitatively to PERM below.

For a given grid resolution, all simulations start with identical particle positions (i.e., we specify the same
seed for the pseudo-random number generator in each case). Eq. (9) is integrated forward in time using the
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schemes described in Section 4. To observe the qualitative differences in the various schemes we integrate each
run to a time of 1 = 2L/U,, which is equivalent to two flow-through times (U, = 1 is the mean convective
velocity), and visually examine the resulting particle position distributions. Given that the analytical solution
is divergence free, ideally the particle position distribution remains uniform both at the grid level and at the
subgrid level. The time step is specified by Ar = CFL m, where CFL is the Courant-Friedrichs—Lewy num-
ber. Figs. 8-10 show the results for the PERM reconstruction, the bilinear reconstruction, and the bicubic
spline interpolation, respectively, for the RK2 scheme using CFL = 1/4 on a 4 x 4 grid with N, = 400 particles
per cell. The bilinear reconstruction is obtained by simply setting the second-order slopes to zero in (26) and
(27). Notice that the PERM results show uniform position distributions at both the grid and subgrid levels,
whereas both the bilinear and bicubic results contain noticea